Skip to content

Le moyen le plus rapide d'itérer sur tous les caractères d'une chaîne de caractères.

N'oubliez pas qu'en informatique une erreur peut avoir plusieurs solutions, de la même manière nous vous apprendrons la meilleure et la plus efficace.

Solution :

PREMIÈRE MISE À JOUR : Avant d'essayer cette solution dans un environnement de production (non conseillé), lisez d'abord ceci : http://www.javaspecialists.eu/archive/Issue237.html.
A partir de Java 9, la solution telle que décrite ne fonctionnera plus, car maintenant Java stockera les chaînes de caractères en tant qu'octet.[] par défaut.

DEUXIÈME MISE À JOUR : En date du 2016-10-25, sur mon AMDx64 8core et la source 1.8, il n'y a aucune différence entre l'utilisation de 'charAt' et l'accès aux champs. Il semble que le jvm soit suffisamment optimisé pour mettre en ligne et rationaliser tout appel 'string.charAt(n)'.

TROISIÈME MISE À JOUR : En date du 2020-09-07, sur mon Ryzen 1950-X 16 cœurs et la source 1.14, 'charAt1' est 9 fois plus lent que l'accès au champ et 'charAt2' est 4 fois plus lent que l'accès au champ. L'accès au champ est de nouveau le grand gagnant. Notez que le programme devra utiliser l'octet[] pour les jvms version Java 9+.

Tout dépend de la longueur du champ String qui est inspectée. Si, comme le dit la question, il s'agit de longue chaînes de caractères, la manière la plus rapide d'inspecter la chaîne de caractères est d'utiliser la réflexion pour accéder au backing. char[] de la chaîne de caractères.

Un benchmark entièrement randomisé avec JDK 8 (win32 et win64) sur un AMD Phenom II 4 core 955 @ 3.2 GHZ (en mode client et en mode serveur) avec 9 techniques différentes (voir ci-dessous !) montre que l'utilisation de String.charAt(n) est la plus rapide pour les petites chaînes de caractères et que l'utilisation de la technique reflection pour accéder au tableau de sauvegarde des chaînes de caractères est presque deux fois plus rapide pour les grandes chaînes de caractères.

L'EXPÉRIENCE

  • 9 techniques d'optimisation différentes sont essayées.

  • Tous les contenus des chaînes de caractères sont randomisés.

  • Le test est fait pour des tailles de chaînes de caractères en multiples de deux en commençant par 0,1,2,4,8,16 etc.

  • Les tests sont effectués 1 000 fois par taille de chaîne.

  • Les tests sont mélangés dans un ordre aléatoire à chaque fois. En d'autres termes, les tests sont faits dans un ordre aléatoire à chaque fois qu'ils sont faits, plus de 1000 fois.

  • Toute la suite de tests est faite en avant, et en arrière, pour montrer l'effet du réchauffement de la JVM sur l'optimisation et les temps.

  • La suite entière est faite deux fois, une fois en -client et l'autre en mode -server mode.

CONCLUSIONS

-Mode client (32 bits)

Pour les chaînes de caractères 1 à 256 caractères de longueur, appelant string.charAt(i) gagne avec un traitement moyen de 13,4 millions à 588 millions de caractères par seconde.

De plus, il est globalement plus rapide de 5,5% (client) et de 13,9% (serveur) comme ceci :

    for (int i = 0; i < data.length(); i++) {
        if (data.charAt(i) <= ' ') {
            doThrow();
        }
    }

que comme ceci avec une variable locale de longueur finale :

    final int len = data.length();
    for (int i = 0; i < len; i++) {
        if (data.charAt(i) <= ' ') {
            doThrow();
        }
    }

Pour les longues chaînes de caractères, 512 à 256K caractères de longueur, l'utilisation de la réflexion pour accéder au tableau de sauvegarde de la chaîne est la plus rapide. Cette technique est presque deux fois plus rapide que String.charAt(i) (178% plus rapide). La vitesse moyenne sur cette plage était de 1,111 milliard de caractères par seconde.

Le champ doit être obtenu à l'avance, puis il peut être réutilisé dans la bibliothèque sur différentes chaînes de caractères. Il est intéressant de noter que, contrairement au code ci-dessus, avec l'accès à Field, il est 9% plus rapide d'avoir une variable locale de longueur finale que d'utiliser 'chars.length' dans la vérification de la boucle. Voici comment l'accès au champ peut être configuré comme le plus rapide :

   final Field field = String.class.getDeclaredField("value");
   field.setAccessible(true);

   try {
       final char[] chars = (char[]) field.get(data);
       final int len = chars.length;
       for (int i = 0; i < len; i++) {
           if (chars[i] <= ' ') {
               doThrow();
           }
       }
       return len;
   } catch (Exception ex) {
       throw new RuntimeException(ex);
   }

Commentaires spéciaux sur le mode -server

Field access commençant à gagner après des chaînes de 32 caractères de longueur en mode serveur sur une machine Java 64 bits sur ma machine AMD 64. Cela ne s'est pas vu avant une longueur de 512 caractères en mode client.

Il convient également de noter que je pense, lorsque j'exécutais JDK 8 (build 32 bits) en mode serveur, les performances globales étaient 7% plus lentes pour les grandes et petites chaînes. C'était avec la build 121 Dec 2013 de JDK 8 early release. Donc, pour l'instant, il semble que le mode serveur 32 bits soit plus lent que le mode client 32 bits.

Ceci étant dit ... il semble que le seul mode serveur qui vaut la peine d'être invoqué est sur une machine 64 bits. Sinon, il entrave réellement les performances.

Pour un build 32 bit fonctionnant en -server mode sur un AMD64, je peux dire ceci :

  1. String.charAt(i) est le grand gagnant dans l'ensemble. Bien qu'entre les tailles 8 à 512 caractères, il y avait des gagnants parmi 'new' 'reuse' et 'field'.
  2. String.charAt(i) est 45% plus rapide en mode client.
  3. L'accès aux champs est deux fois plus rapide pour les grandes chaînes de caractères en mode client.

Il faut aussi dire que String.chars() (Stream et la version parallèle) sont un buste. Beaucoup plus lent que n'importe quelle autre méthode. Le site Streams API est un moyen plutôt lent pour effectuer des opérations générales sur les chaînes de caractères.

Liste de souhaits

Java String pourrait avoir des méthodes optimisées acceptant les prédicats comme contains(predicate), forEach(consumer), forEachWithIndex(consumer). Ainsi, sans que l'utilisateur ait besoin de connaître la longueur ou de répéter les appels aux méthodes String, celles-ci pourraient aider les bibliothèques de parsing.... beep-beep beep speedup.

Continuez à rêver 🙂

Happy Strings !

~SH

Le test a utilisé les 9 méthodes suivantes pour vérifier la présence d'espaces dans la chaîne de caractères :

"charAt1" -- VÉRIFIER LE CONTENU DE LA CHAÎNE DE CARACTÈRES DE LA FAÇON USUELLE :

int charAtMethod1(final String data) {
    final int len = data.length();
    for (int i = 0; i < len; i++) {
        if (data.charAt(i) <= ' ') {
            doThrow();
        }
    }
    return len;
}

"charAt2" -- MÊME CHOSE QUE PLUS HAUT, MAIS UTILISER String.length() AU LIEU DE FAIRE UN INT LOCAL FINAL POUR LA LONGUEUR.

int charAtMethod2(final String data) {
    for (int i = 0; i < data.length(); i++) {
        if (data.charAt(i) <= ' ') {
            doThrow();
        }
    }
    return data.length();
}

"stream" -- UTILISE LA NOUVELLE IntStream de JAVA-8 String ET LA PASSER A UN PREDICAT POUR FAIRE LA VERIFICATION

int streamMethod(final String data, final IntPredicate predicate) {
    if (data.chars().anyMatch(predicate)) {
        doThrow();
    }
    return data.length();
}

"streamPara" -- MEME QU'AU-DESSUS, MAIS OH-LA-LA - GO PARALLEL ! !!

// avoid this at all costs
int streamParallelMethod(final String data, IntPredicate predicate) {
    if (data.chars().parallel().anyMatch(predicate)) {
        doThrow();
    }
    return data.length();
}

"reuse" -- RECHARGE D'UN CHAR REUSABLE[] AVEC LE CONTENU DE LA CHAÎNE DE CARACTÈRES

int reuseBuffMethod(final char[] reusable, final String data) {
    final int len = data.length();
    data.getChars(0, len, reusable, 0);
    for (int i = 0; i < len; i++) {
        if (reusable[i] <= ' ') {
            doThrow();
        }
    }
    return len;
}

"new1" -- OBTIENT UNE NOUVELLE COPIE DU char[] À PARTIR DE LA CHAÎNE DE CARACTÈRES

int newMethod1(final String data) {
    final int len = data.length();
    final char[] copy = data.toCharArray();
    for (int i = 0; i < len; i++) {
        if (copy[i] <= ' ') {
            doThrow();
        }
    }
    return len;
}

"new2" -- MEME QU'AU-DESSUS, MAIS UTILISER "FOR-EACH".

int newMethod2(final String data) {
    for (final char c : data.toCharArray()) {
        if (c <= ' ') {
            doThrow();
        }
    }
    return data.length();
}

"field1" -- FANCY !! OBTENEZ UN CHAMP POUR ACCÉDER AU CARTAGE INTERNE DE LA CHAÎNE DE CHIFFRES[]

int fieldMethod1(final Field field, final String data) {
    try {
        final char[] chars = (char[]) field.get(data);
        final int len = chars.length;
        for (int i = 0; i < len; i++) {
            if (chars[i] <= ' ') {
                doThrow();
            }
        }
        return len;
    } catch (Exception ex) {
        throw new RuntimeException(ex);
    }
}

"field2" -- MÊME QU'AU-DESSUS, MAIS UTILISER "FOR-EACH" (pour chaque)

int fieldMethod2(final Field field, final String data) {
    final char[] chars;
    try {
        chars = (char[]) field.get(data);
    } catch (Exception ex) {
        throw new RuntimeException(ex);
    }
    for (final char c : chars) {
        if (c <= ' ') {
            doThrow();
        }
    }
    return chars.length;
}

RÉSULTATS COMPOSITES POUR LE CLIENT -client MODE (tests en avant et en arrière combinés)

Note : que le mode -client avec Java 32 bit et le mode -serveur avec Java 64 bit sont les mêmes que ci-dessous sur ma machine AMD64.

Size     WINNER  charAt1 charAt2  stream streamPar   reuse    new1    new2  field1  field2
1        charAt    77.0     72.0   462.0     584.0   127.5    89.5    86.0   159.5   165.0
2        charAt    38.0     36.5   284.0   32712.5    57.5    48.3    50.3    89.0    91.5
4        charAt    19.5     18.5   458.6    3169.0    33.0    26.8    27.5    54.1    52.6
8        charAt     9.8      9.9   100.5    1370.9    17.3    14.4    15.0    26.9    26.4
16       charAt     6.1      6.5    73.4     857.0     8.4     8.2     8.3    13.6    13.5
32       charAt     3.9      3.7    54.8     428.9     5.0     4.9     4.7     7.0     7.2
64       charAt     2.7      2.6    48.2     232.9     3.0     3.2     3.3     3.9     4.0
128      charAt     2.1      1.9    43.7     138.8     2.1     2.6     2.6     2.4     2.6
256      charAt     1.9      1.6    42.4      90.6     1.7     2.1     2.1     1.7     1.8
512      field1     1.7      1.4    40.6      60.5     1.4     1.9     1.9     1.3     1.4
1,024    field1     1.6      1.4    40.0      45.6     1.2     1.9     2.1     1.0     1.2
2,048    field1     1.6      1.3    40.0      36.2     1.2     1.8     1.7     0.9     1.1
4,096    field1     1.6      1.3    39.7      32.6     1.2     1.8     1.7     0.9     1.0
8,192    field1     1.6      1.3    39.6      30.5     1.2     1.8     1.7     0.9     1.0
16,384   field1     1.6      1.3    39.8      28.4     1.2     1.8     1.7     0.8     1.0
32,768   field1     1.6      1.3    40.0      26.7     1.3     1.8     1.7     0.8     1.0
65,536   field1     1.6      1.3    39.8      26.3     1.3     1.8     1.7     0.8     1.0
131,072  field1     1.6      1.3    40.1      25.4     1.4     1.9     1.8     0.8     1.0
262,144  field1     1.6      1.3    39.6      25.2     1.5     1.9     1.9     0.8     1.0

RÉSULTATS COMPOSITES POUR LE SERVEUR -server MODE (tests en avant et en arrière combinés)

Note : il s'agit du test pour Java 32 bit fonctionnant en mode serveur sur un AMD64. Le mode serveur pour Java 64 bit était le même que Java 32 bit en mode client, sauf que l'accès au champ commençant à gagner après une taille de 32 caractères.

Size     WINNER  charAt1 charAt2  stream streamPar   reuse    new1    new2  field1  field2
1        charAt     74.5    95.5   524.5     783.0    90.5   102.5    90.5   135.0   151.5
2        charAt     48.5    53.0   305.0   30851.3    59.3    57.5    52.0    88.5    91.8
4        charAt     28.8    32.1   132.8    2465.1    37.6    33.9    32.3    49.0    47.0
8          new2     18.0    18.6    63.4    1541.3    18.5    17.9    17.6    25.4    25.8
16         new2     14.0    14.7   129.4    1034.7    12.5    16.2    12.0    16.0    16.6
32         new2      7.8     9.1    19.3     431.5     8.1     7.0     6.7     7.9     8.7
64        reuse      6.1     7.5    11.7     204.7     3.5     3.9     4.3     4.2     4.1
128       reuse      6.8     6.8     9.0     101.0     2.6     3.0     3.0     2.6     2.7
256      field2      6.2     6.5     6.9      57.2     2.4     2.7     2.9     2.3     2.3
512       reuse      4.3     4.9     5.8      28.2     2.0     2.6     2.6     2.1     2.1
1,024    charAt      2.0     1.8     5.3      17.6     2.1     2.5     3.5     2.0     2.0
2,048    charAt      1.9     1.7     5.2      11.9     2.2     3.0     2.6     2.0     2.0
4,096    charAt      1.9     1.7     5.1       8.7     2.1     2.6     2.6     1.9     1.9
8,192    charAt      1.9     1.7     5.1       7.6     2.2     2.5     2.6     1.9     1.9
16,384   charAt      1.9     1.7     5.1       6.9     2.2     2.5     2.5     1.9     1.9
32,768   charAt      1.9     1.7     5.1       6.1     2.2     2.5     2.5     1.9     1.9
65,536   charAt      1.9     1.7     5.1       5.5     2.2     2.4     2.4     1.9     1.9
131,072  charAt      1.9     1.7     5.1       5.4     2.3     2.5     2.5     1.9     1.9
262,144  charAt      1.9     1.7     5.1       5.1     2.3     2.5     2.5     1.9     1.9

CODE COMPLET DU PROGRAMME EXÉCUTABLE

(pour tester sur Java 7 et antérieur, enlever les deux tests de flux)

import java.lang.reflect.Field;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
import java.util.function.IntPredicate;

/**
 * @author Saint Hill 
 */
public final class TestStrings {

    // we will not test strings longer than 512KM
    final int MAX_STRING_SIZE = 1024 * 256;

    // for each string size, we will do all the tests
    // this many times
    final int TRIES_PER_STRING_SIZE = 1000;

    public static void main(String[] args) throws Exception {
        new TestStrings().run();
    }

    void run() throws Exception {

        // double the length of the data until it reaches MAX chars long
        // 0,1,2,4,8,16,32,64,128,256 ... 
        final List sizes = new ArrayList<>();
        for (int n = 0; n <= MAX_STRING_SIZE; n = (n == 0 ? 1 : n * 2)) {
            sizes.add(n);
        }

        // CREATE RANDOM (FOR SHUFFLING ORDER OF TESTS)
        final Random random = new Random();

        System.out.println("Rate in nanoseconds per character inspected.");
        System.out.printf("==== FORWARDS (tries per size: %s) ==== n", TRIES_PER_STRING_SIZE);

        printHeadings(TRIES_PER_STRING_SIZE, random);

        for (int size : sizes) {
            reportResults(size, test(size, TRIES_PER_STRING_SIZE, random));
        }

        // reverse order or string sizes
        Collections.reverse(sizes);

        System.out.println("");
        System.out.println("Rate in nanoseconds per character inspected.");
        System.out.printf("==== BACKWARDS (tries per size: %s) ==== n", TRIES_PER_STRING_SIZE);

        printHeadings(TRIES_PER_STRING_SIZE, random);

        for (int size : sizes) {
            reportResults(size, test(size, TRIES_PER_STRING_SIZE, random));

        }
    }

    ///
    ///
    ///  METHODS OF CHECKING THE CONTENTS
    ///  OF A STRING. ALWAYS CHECKING FOR
    ///  WHITESPACE (CHAR <=' ')
    ///  
    ///
    // CHECK THE STRING CONTENTS
    int charAtMethod1(final String data) {
        final int len = data.length();
        for (int i = 0; i < len; i++) {
            if (data.charAt(i) <= ' ') {
                doThrow();
            }
        }
        return len;
    }

    // SAME AS ABOVE BUT USE String.length()
    // instead of making a new final local int 
    int charAtMethod2(final String data) {
        for (int i = 0; i < data.length(); i++) {
            if (data.charAt(i) <= ' ') {
                doThrow();
            }
        }
        return data.length();
    }

    // USE new Java-8 String's IntStream
    // pass it a PREDICATE to do the checking
    int streamMethod(final String data, final IntPredicate predicate) {
        if (data.chars().anyMatch(predicate)) {
            doThrow();
        }
        return data.length();
    }

    // OH LA LA - GO PARALLEL!!!
    int streamParallelMethod(final String data, IntPredicate predicate) {
        if (data.chars().parallel().anyMatch(predicate)) {
            doThrow();
        }
        return data.length();
    }

    // Re-fill a resuable char[] with the contents
    // of the String's char[]
    int reuseBuffMethod(final char[] reusable, final String data) {
        final int len = data.length();
        data.getChars(0, len, reusable, 0);
        for (int i = 0; i < len; i++) {
            if (reusable[i] <= ' ') {
                doThrow();
            }
        }
        return len;
    }

    // Obtain a new copy of char[] from String
    int newMethod1(final String data) {
        final int len = data.length();
        final char[] copy = data.toCharArray();
        for (int i = 0; i < len; i++) {
            if (copy[i] <= ' ') {
                doThrow();
            }
        }
        return len;
    }

    // Obtain a new copy of char[] from String
    // but use FOR-EACH
    int newMethod2(final String data) {
        for (final char c : data.toCharArray()) {
            if (c <= ' ') {
                doThrow();
            }
        }
        return data.length();
    }

    // FANCY!
    // OBTAIN FIELD FOR ACCESS TO THE STRING'S
    // INTERNAL CHAR[]
    int fieldMethod1(final Field field, final String data) {
        try {
            final char[] chars = (char[]) field.get(data);
            final int len = chars.length;
            for (int i = 0; i < len; i++) {
                if (chars[i] <= ' ') {
                    doThrow();
                }
            }
            return len;
        } catch (Exception ex) {
            throw new RuntimeException(ex);
        }
    }

    // same as above but use FOR-EACH
    int fieldMethod2(final Field field, final String data) {
        final char[] chars;
        try {
            chars = (char[]) field.get(data);
        } catch (Exception ex) {
            throw new RuntimeException(ex);
        }
        for (final char c : chars) {
            if (c <= ' ') {
                doThrow();
            }
        }
        return chars.length;
    }

    /**
     *
     * Make a list of tests. We will shuffle a copy of this list repeatedly
     * while we repeat this test.
     *
     * @param data
     * @return
     */
    List makeTests(String data) throws Exception {
        // make a list of tests
        final List tests = new ArrayList();

        tests.add(new Jobber("charAt1") {
            int check() {
                return charAtMethod1(data);
            }
        });

        tests.add(new Jobber("charAt2") {
            int check() {
                return charAtMethod2(data);
            }
        });

        tests.add(new Jobber("stream") {
            final IntPredicate predicate = new IntPredicate() {
                public boolean test(int value) {
                    return value <= ' ';
                }
            };

            int check() {
                return streamMethod(data, predicate);
            }
        });

        tests.add(new Jobber("streamPar") {
            final IntPredicate predicate = new IntPredicate() {
                public boolean test(int value) {
                    return value <= ' ';
                }
            };

            int check() {
                return streamParallelMethod(data, predicate);
            }
        });

        // Reusable char[] method
        tests.add(new Jobber("reuse") {
            final char[] cbuff = new char[MAX_STRING_SIZE];

            int check() {
                return reuseBuffMethod(cbuff, data);
            }
        });

        // New char[] from String
        tests.add(new Jobber("new1") {
            int check() {
                return newMethod1(data);
            }
        });

        // New char[] from String
        tests.add(new Jobber("new2") {
            int check() {
                return newMethod2(data);
            }
        });

        // Use reflection for field access
        tests.add(new Jobber("field1") {
            final Field field;

            {
                field = String.class.getDeclaredField("value");
                field.setAccessible(true);
            }

            int check() {
                return fieldMethod1(field, data);
            }
        });

        // Use reflection for field access
        tests.add(new Jobber("field2") {
            final Field field;

            {
                field = String.class.getDeclaredField("value");
                field.setAccessible(true);
            }

            int check() {
                return fieldMethod2(field, data);
            }
        });

        return tests;
    }

    /**
     * We use this class to keep track of test results
     */
    abstract class Jobber {

        final String name;
        long nanos;
        long chars;
        long runs;

        Jobber(String name) {
            this.name = name;
        }

        abstract int check();

        final double nanosPerChar() {
            double charsPerRun = chars / runs;
            long nanosPerRun = nanos / runs;
            return charsPerRun == 0 ? nanosPerRun : nanosPerRun / charsPerRun;
        }

        final void run() {
            runs++;
            long time = System.nanoTime();
            chars += check();
            nanos += System.nanoTime() - time;
        }
    }

    // MAKE A TEST STRING OF RANDOM CHARACTERS A-Z
    private String makeTestString(int testSize, char start, char end) {
        Random r = new Random();
        char[] data = new char[testSize];
        for (int i = 0; i < data.length; i++) {
            data[i] = (char) (start + r.nextInt(end));
        }
        return new String(data);
    }

    // WE DO THIS IF WE FIND AN ILLEGAL CHARACTER IN THE STRING
    public void doThrow() {
        throw new RuntimeException("Bzzzt -- Illegal Character!!");
    }

    /**
     * 1. get random string of correct length 2. get tests (List) 3.
     * perform tests repeatedly, shuffling each time
     */
    List test(int size, int tries, Random random) throws Exception {
        String data = makeTestString(size, 'A', 'Z');
        List tests = makeTests(data);
        List copy = new ArrayList<>(tests);
        while (tries-- > 0) {
            Collections.shuffle(copy, random);
            for (Jobber ti : copy) {
                ti.run();
            }
        }
        // check to make sure all char counts the same
        long runs = tests.get(0).runs;
        long count = tests.get(0).chars;
        for (Jobber ti : tests) {
            if (ti.runs != runs && ti.chars != count) {
                throw new Exception("Char counts should match if all correct algorithms");
            }
        }
        return tests;
    }

    private void printHeadings(final int TRIES_PER_STRING_SIZE, final Random random) throws Exception {
        System.out.print("  Size");
        for (Jobber ti : test(0, TRIES_PER_STRING_SIZE, random)) {
            System.out.printf("%9s", ti.name);
        }
        System.out.println("");
    }

    private void reportResults(int size, List tests) {
        System.out.printf("%6d", size);
        for (Jobber ti : tests) {
            System.out.printf("%,9.2f", ti.nanosPerChar());
        }
        System.out.println("");
    }
}

Il s'agit juste d'une micro-optimisation dont vous ne devriez pas vous soucier.

char[] chars = str.toCharArray();

vous renvoie une copie de str tableaux de caractères (dans le JDK, il retourne une copie des caractères en appelant System.arrayCopy).

A part cela, str.charAt() vérifie seulement si l'index est bien dans les limites et renvoie un caractère dans l'index du tableau.

La première ne crée pas de mémoire supplémentaire dans la JVM.

Juste par curiosité et pour comparer avec la réponse de Saint Hill.

Si vous avez besoin de traiter des données lourdes, vous ne devez pas utiliser la JVM en mode client. Le mode client n'est pas fait pour les optimisations.

Comparons les résultats des benchmarks de @Saint Hill en utilisant une JVM en mode client et en mode serveur.

Core2Quad Q6600 G0 @ 2.4GHz
JavaSE 1.7.0_40

Voir aussi : Les vraies différences entre "java -server" et "java -client" ?


MODE CLIENT :

len =      2:    111k charAt(i),  105k cbuff[i],   62k new[i],   17k field access.   (chars/ms) 
len =      4:    285k charAt(i),  166k cbuff[i],  114k new[i],   43k field access.   (chars/ms) 
len =      6:    315k charAt(i),  230k cbuff[i],  162k new[i],   69k field access.   (chars/ms) 
len =      8:    333k charAt(i),  275k cbuff[i],  181k new[i],   85k field access.   (chars/ms) 
len =     12:    342k charAt(i),  342k cbuff[i],  222k new[i],  117k field access.   (chars/ms) 
len =     16:    363k charAt(i),  347k cbuff[i],  275k new[i],  152k field access.   (chars/ms) 
len =     20:    363k charAt(i),  392k cbuff[i],  289k new[i],  180k field access.   (chars/ms) 
len =     24:    375k charAt(i),  428k cbuff[i],  311k new[i],  205k field access.   (chars/ms) 
len =     28:    378k charAt(i),  474k cbuff[i],  341k new[i],  233k field access.   (chars/ms) 
len =     32:    376k charAt(i),  492k cbuff[i],  340k new[i],  251k field access.   (chars/ms) 
len =     64:    374k charAt(i),  551k cbuff[i],  374k new[i],  367k field access.   (chars/ms) 
len =    128:    385k charAt(i),  624k cbuff[i],  415k new[i],  509k field access.   (chars/ms) 
len =    256:    390k charAt(i),  675k cbuff[i],  436k new[i],  619k field access.   (chars/ms) 
len =    512:    394k charAt(i),  703k cbuff[i],  439k new[i],  695k field access.   (chars/ms) 
len =   1024:    395k charAt(i),  718k cbuff[i],  462k new[i],  742k field access.   (chars/ms) 
len =   2048:    396k charAt(i),  725k cbuff[i],  471k new[i],  767k field access.   (chars/ms) 
len =   4096:    396k charAt(i),  727k cbuff[i],  459k new[i],  780k field access.   (chars/ms) 
len =   8192:    397k charAt(i),  712k cbuff[i],  446k new[i],  772k field access.   (chars/ms) 

MODE SERVEUR :

len =      2:     86k charAt(i),   41k cbuff[i],   46k new[i],   80k field access.   (chars/ms) 
len =      4:    571k charAt(i),  250k cbuff[i],   97k new[i],  222k field access.   (chars/ms) 
len =      6:    666k charAt(i),  333k cbuff[i],  125k new[i],  315k field access.   (chars/ms) 
len =      8:    800k charAt(i),  400k cbuff[i],  181k new[i],  380k field access.   (chars/ms) 
len =     12:    800k charAt(i),  521k cbuff[i],  260k new[i],  545k field access.   (chars/ms) 
len =     16:    800k charAt(i),  592k cbuff[i],  296k new[i],  640k field access.   (chars/ms) 
len =     20:    800k charAt(i),  666k cbuff[i],  408k new[i],  800k field access.   (chars/ms) 
len =     24:    800k charAt(i),  705k cbuff[i],  452k new[i],  800k field access.   (chars/ms) 
len =     28:    777k charAt(i),  736k cbuff[i],  368k new[i],  933k field access.   (chars/ms) 
len =     32:    800k charAt(i),  780k cbuff[i],  571k new[i],  969k field access.   (chars/ms) 
len =     64:    800k charAt(i),  901k cbuff[i],  800k new[i],  1306k field access.   (chars/ms) 
len =    128:    1084k charAt(i),  888k cbuff[i],  633k new[i],  1620k field access.   (chars/ms) 
len =    256:    1122k charAt(i),  966k cbuff[i],  729k new[i],  1790k field access.   (chars/ms) 
len =    512:    1163k charAt(i),  1007k cbuff[i],  676k new[i],  1910k field access.   (chars/ms) 
len =   1024:    1179k charAt(i),  1027k cbuff[i],  698k new[i],  1954k field access.   (chars/ms) 
len =   2048:    1184k charAt(i),  1043k cbuff[i],  732k new[i],  2007k field access.   (chars/ms) 
len =   4096:    1188k charAt(i),  1049k cbuff[i],  742k new[i],  2031k field access.   (chars/ms) 
len =   8192:    1157k charAt(i),  1032k cbuff[i],  723k new[i],  2048k field access.   (chars/ms) 

CONCLUSION :

Comme vous pouvez le constater, le mode serveur est beaucoup plus rapide.

Nous serions ravis si vous pouviez montrer cette déclaration si cela vous a aidé.



Utilisez notre moteur de recherche

Ricerca
Generic filters

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée.